4.1. Conservation laws and critical times Consider the PDE

$$u_y + \partial_x(f(u)) = 0.$$

In the following cases, compute the critical time y_c (i.e., the first time when the solution becomes nonsmooth):

- (a) $f(u) = \frac{1}{2}u^2$, the initial datum is $u(x, 0) = \sin(x)$.
- (b) $f(u) = \sin(u)$, the initial datum is $u(x, 0) = x^2$.
- (c) $f(u) = e^u$, the initial datum is $u(x, 0) = x^3$.

4.2. Multiple choice Cross the correct answer(s).

- (a) In all generality, a conservation law (as we defined it in the lecture)
 - \bigcirc admits a strong local solution
 - \bigcirc admits a strong global solution
 - \bigcirc develops singularities
- (b) Consider the conservation law

$$\begin{cases} u_y + (\alpha u^2 - u)u_x = 0, & (x, y) \in \mathbb{R} \times (0, +\infty), \\ u(x, 0) = 1, & x < 0, \\ u(x, 0) = 0, & x \ge 0. \end{cases}$$

Then, the shock wave solution has strictly positive slope if

 $\bigcirc \alpha > 1 \qquad \bigcirc \alpha < 0$ $\bigcirc \alpha < 1 \qquad \bigcirc \alpha > \frac{3}{2}$ $\bigcirc \alpha > 0 \qquad \bigcirc \alpha < \frac{3}{2}$

(c) The conservation law

$$\begin{cases}
 u_y + (u^2 + 5)u_x = 0, & (x, y) \in \mathbb{R} \times (0, +\infty), \\
 u(x, 0) = 1, & x < 0, \\
 u(x, 0) = \sqrt{1 - x}, & x \in [0, 1], \\
 u(x, 0) = 0, & x > 1,
 \end{cases}$$
(1)

has a crossing of characteristics at^1

 \bigcirc might have several weak solutions

 \bigcirc has finite critical time

 \bigcirc has straight lines as characteristics

¹You can partially check your answer computing y_c . Why?

ETH Zürich	Analysis 3	D-MATH	
HS 2022	Serie 4	Prof. M. Iacobelli	

\bigcirc (6,2)	\bigcirc (1,2)
\bigcirc (6,1)	$\bigcirc (0,1)$

(d) The shock wave solution of Equation (1) has slope

\bigcirc	$\frac{16}{3}$	$\bigcirc \frac{31}{6}$
\bigcirc	$\frac{2}{6}$	$\bigcirc 0$

Extra exercises

4.3. Weak solutions Consider the PDE

$$\partial_y u + \partial_x \left(\frac{u^4}{4}\right) = 0$$

- in the region $x \in \mathbb{R}$ and y > 0.
- (a) Show that the function $u(x,y) := \sqrt[3]{\frac{x}{y}}$ is a classical solution of the PDE.
- (b) Show that the function

$$u(x,y) := \begin{cases} 0 & \text{if } x > 0, \\ \sqrt[3]{\frac{x}{y}} & \text{if } x \le 0. \end{cases}$$

is a *weak* solution of the PDE.